

Sewage Disposal to 1950

Storm Drains: Flushings to Streams

Dilution: Waste Assimilative Capacity

1887-1900: (Chicago) Rudolf Hering
Main Drainage Canal, Saultary District

Broad Irrigation Land Disposal

1876: Soil Clogging, Harmful to Crops

Intermittent Filtration (Biological Treatment)

1887: Lawrence (Mass.) Experiment Station

Treatment Septic Tanks, Tile Fields

Intermittent (Sand) Filtration

Rivers Pollution Commission (Great Britain)

Mass. State Board of Health, Lawrence Experiment Station

(effective; bacterial treatment; abandoned for scarcity of material)

Primary (Plain) Sedimentation

Imhoff Tanks (sedimentation plus digestion) (1906)

(two-story tank providing sludge storage and digestion)

Madison-Chatham, New Jersey (1911)

Racks, Screens (protect pumps, remove large solids)

Grit Chambers Worcester, Massachusetts (1904)

HO'C

(1870)

Early Sewage Treatment

Experimental Biological (Secondary) Wastewater Treatment

Contact Beds (England, coarse media contact) (1893) Glencoe, Illinois (stones, gravel) (1901)

Trickling Filters (Reading, Pennsylvania) (1908) (revolving pipes and sprays over stone beds; biological treatment by *attached* growth)

Separate Sludge Digestion, sludge drying beds (1912) Birmingham, England; Baltimore, MD (anaerobic digestion in covered, heated, stirred tanks)

Activated Sludge (suspended biological growth)
Lawrence Experiment Station, Massachusetts
(return of activated sludge to influent)
(1912)

Sewage Disposal - 1930

U.S. Sewage Disposal (Cities > 100,000 Population)

"Dilution is the Solution to Pollution"

<u>Treatment</u>	<u>Population</u>	<u></u> %
None, Dilution alone	16,900,000	46.4
Fine Screening, Dilution	8,500,000	23.3
Sedimentation, Dilution	5,700,000	15.6
Trickling Filtration, Dilution	2,500,000	6.9
Activated Sludge, Dilution	2,600,000	7.1

14% of population of major cities had biological treatment.

Activated Sludge Process Zone 1 Zone 2 Zone 3 Secondary anaerobic anoxic oxygen-rich clarifier Effluent Phosphate Colloidal and dissolved organic uptake from primary co, 0, treatment Clarified matter water Bacteria - Growth Bacteria - Growth Bacteria - Growth fermentation Activated sludge Activated return sludge NO₃ PO4 PO43/ Organic acids Organic acids Aeration NH4+ NH, NO, Removal of excess sludge with organic phosphate Activated sludge return Activated Sludge (bacterial cell mass) is recovered from the Sludge

Secondary Clarifier and returned to the influent of the Aeration

treatment

